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Measuring statistical dependence and coupling of subsystems
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We investigate recently proposed measures for the statistical dependence of systems with complex dynami-
cal behavior. We consider appropriate model systems, to ensure that influences of individual properties of the
systems are excluded. We demonstrate that it is indeed possible to obtain nontrivial directional information, but
we also argue that the interpretation of this information is difficult.

PACS number~s!: 05.45.Tp, 06.20.Dk
n
fo
s
ge
y
th
m
n

ple

he
io
uc
l r
de
t

cl

t.
e

-
-

ch

po

in
th
t i
e-
e

tio
,
w
be

de-
-

of

en-
the

en
ms
the
st.

a-

re-
an
t
,
y.
t

ors

f

we
-
r

The question for dependencies between measured sig
occurs in many applications. First, it can be of interest
very practical reasons. This is, e.g., the case if one want
avoid the analysis of redundant information in a hu
amount of measured data. On the other hand, often ph
cally different signals are taken from one system and
analysis of the dependence between them can give infor
tion of the hidden dynamics of the system. Finally depe
dency measures are useful tools when dealing with cou
systems and studying synchronization.

Aside from the simple existence of dependencies, furt
questions occur. These involve driver–response relat
ships, coupling directions and similar items. To answer s
questions, asymmetry of the used measure is a minima
quirement. Although many symmetric quantities can be
symmetrized formally, e.g., by using delays, it is desirable
use measures that are asymmetric by construction. One
of such quantities was introduced recently@3,4# and we will
discuss its properties in the later part of this Brief Repor

The simplest and usually first method to search for dep
dencies is to consider linear correlations. LetX andY be two
random variables with expectation valuesx̄5E@X# and ȳ
5E@Y#. The covarianceC(X,Y) is then given by the expec
tation valueE@(x2 x̄)(y2 ȳ)#. For time series, the expecta
tion valuesE@ # are estimated by averaging over time, whi
yields the estimator

Ĉ~X,Y!5
1

N (
i 51

N

~xi2 x̄!~yi2 ȳ!, ~1!

for the covariance, withi being the time index. While from
nonvanishing covariance a dependency betweenX andY can
be deduced, the opposite conclusion is not allowed. One
sible generalization of Eq.~1! is to introduce a time lagt
between the two time series. With this, much additional
formation can be gained about dynamical properties of
underlying processes. To avoid the analysis of such vas
formation, we will only consider static, i.e., equal time, d
pendencies here. Time-delayed generalizations of the m
sures used here are quite simple. Another useful modifica
of Eq. ~1! is the introduction of powers different from one
making it nonlinear. The number of higher moments, ho
ever, proliferates so fast that the computational price for
ing able to find any statistical dependence is prohibitive.
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Different approaches to analyze dependencies can be
rived from information theory. A useful quantity is the mu
tual information

M ~X,Y!5I ~X!1I ~Y!2I ~X,Y!, ~2!

where I (X), I (Y) are the respective Shannon entropies
the variablesX and Y, and I (X,Y) is the joint entropy. For
independent systems the mutual information is zero. The
tropies can be calculated with a partition scheme or with
generalized correlation sum@1#.

Analyzing time series from two or more systems is oft
motivated by the presumption that the underlying syste
are coupled in some way. Aside from the strength of
coupling, also the direction of the coupling is of intere
However, symmetric quantities such as the mutual inform
tion cannot deliver information about the direction.

An approach to extract mutual dependencies was p
sented recently@2,3#. There, the quantities are based on me
distances in phase space or embedding space. Lexi
5(xi ,xi 1t , . . . ,xi 1(m21)t) be the N embedding vectors
wherem andt are embedding dimension and the time dela
We will use t51 throughout the paper. Further, le
r i( j ), j 51, . . . ,k, be the time indices of thek nearest neigh-
bors ofxi . The squared mean distance from these neighb
is then given by

Ri
(k)~X!5

1

k (
j 51

k

~xi2xr i ( j )!
2. ~3!

Analogously,Ri
(k)(Y) can be defined by exchangingX andY.

The corresponding time indices of thek nearest neighbors o
yi are calledsi( j ). Further, theconditionaldistance

Ri
(k)~XuY!5

1

k (
j 51

k

~xi2xsi ( j )!
2 ~4!

can be defined, which only differs fromRi
(k)(X) in the indi-

ces used in the second term. For independent systems
expectRi

(k)(XuY)@Ri
(k)(X), while strongly dependent sys

tems yieldRi
(k)(XuY)'Ri

(k)(X). With these, a measure fo
dependence, such as e.g.,

S(k)~XuY!5
1

N (
i 51

N Ri
(k)~X!

Ri
(k)~XuY!

~5!
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can be defined that takes values from nearly zero for in
pendent systems to one for strongly dependent and iden
systems. A measure with similar properties is

H (k)~XuY!5
1

N (
i 51

N

ln
Ri

(N21)~X!

Ri
(k)~XuY!

, ~6!

which differs fromS only in comparing the conditional dis
tance to the mean distance to all other points and using
logarithm. Both quantities have proven to be quite usefu
real data applications@3# and simple toy models@4#. While S
andH show the same behavior in all cases studied here,H is
more suitable to tell the ‘‘direction’’ of the coupling by it
more pronounced asymmetry. We will show two simple e
amples in the following.

To illustrate the behavior ofH we consider two unidirec-
tionally coupled He´non maps

x1851.42x1
21bxx2 ,

~7!
x285x1 ,

y1851.42@~12C!y11Cx1#y11byy2 ,
~8!

y285y1 .

Note that the autonomous systemX can use a different pa
rameterb than the driven systemY. For the first example we
usebx5by50.3 and calculateH with an embedding dimen
sion m53 and k520 nearest neighbors. Figure 1 show
H(XuY) andH(YuX) in dependence of the coupling streng
C. For valuesC>0.7, the two systems synchronize iden
cally which can easily be seen in a sharp increase ofH and
the following equality ofH(XuY) andH(YuX). This increase
can also be seen with other dependence measures su
mutual information~2! or linear correlation~1!.

For weaker coupling we observe a strong asymmetry

H~XuY!.H~YuX!. ~9!

This behavior can also be seen in Fig. 2, where for the dri

FIG. 1. H(XuY) andH(YuX) for coupled He´non maps withbx

5by50.3.
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systemby50.1 is used and Eq.~9! holds for allC.0. Qui-
roga et al. give further examples and find Eq.~9! holding
generally@4#.

The shown asymmetry ofH is its main advantage ove
similar measures for dependence. The caveat of the ab
examples is that the two involved systems already show
ferent dynamics on their own. They have, e.g., different
tropies, dimensions etc. and in all the above examples
I (Y)>I (X) holds for allC. In this paper we want to addres
the question whether the asymmetry ofH arises from differ-
ent properties of the individual time series or it indeed m
sures the direction of the coupling. To achieve this, we h
to construct systems with unidirectional coupling but oth
wise completely identical properties.

Therefore, we consider a coupled map lattice$xi
l%, l

51, . . . ,L with periodic boundary conditions. In such
‘‘ring’’ of L maps we have translation invariance and
lattice point is singled out. The unidirectional coupling
introduced as

xi 11
l 5~12«! f ~xi

l !1« f ~xi
l 21!. ~10!

Of course, we needL.2 to get asymmetry and in the fol
lowing examples we useL5100 to ensure that causal influ
ences in the backward direction are negligible. Forf ( ) the
tent map f (x)5122ux2 1

2 u on the interval@0,1# is used.
Figure 3 shows that the asymmetry ofH is also present for
this system, while quantities like the entropyI are the same
for all lattice sites within numerical fluctuations. Thus th
asymmetryH does not rely just on the individual propertie
of the two time series.

Another interesting observation from Fig. 3 is that Eq.~9!
does not hold for all«. There is a crossover at about«
'0.55. And further, we see thatH(Xl 11uXl) does not vanish
for «51 where the maps should be uncoupled and only
shifted by one lattice site in every iteration.

The reason for the latter is that we used two-dimensio
embedding vectors (m52) to calculateH, i.e., we analyzed
the dependence between the two vectors

S xi
l 21

xi 11
l 21D↘S xi

l

xi 11
l D , ~11!

FIG. 2. H(XuY) andH(YuX) for coupled He´non maps withbx

50.3 andby50.1.



o

tio
he

lly
ow

a
n

.

e-

-

act
his
d

1

n
.

7510 PRE 62BRIEF REPORTS
where the arrow symbolizes the mapf (xi
l 21)5xi 11

l that for
«51 is the only direct influence between the components
the two vectors. IfH is calculated without embedding (m
51) we get Fig. 4 andH vanishes for«51 in both direc-
tions.

To understand the inversion of Eq.~9! for «.0.5, we
observe that bothxi 11

l 21 andxi 11
l are influenced byxi

l 21 and
one other neighboring lattice site. The coupling strength«
determines the corresponding weights. Neglecting the ac
of the map, we can model this by a simple mixing in t
following form:

ui5«yi
(1)1~12«!yi

(2) ,
~12!

v i5~12«!yi
(3)1«yi

(2) ,

whereY( l )5$yi
( l )%, l 51,2,3, are independent and identica

distributed random numbers. In the following we shall sh
that even this toy model gives the same nontrivial results
the coupled map lattice. If we choose uniform distributio
p(Y(1))5p(Y(2))5p(Y(3))51 for Y( l ), the resulting
H(UuV) andH(VuU) does in fact show almost the same«
dependence as the coupled map lattice shown in Fig

FIG. 3. H(Xl uXl 11) andH(Xl 11uXl) for a ring of unidirectional
coupled tent maps.

FIG. 4. Same as Fig. 3, but without embedding.
f
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Comparing the distributionsp(Xl ,Xl 11) and p(U,V) for
fixed « in Fig. 5, we see that they are also quite similar.

Let us concentrate on the right figure to illustrate the b
havior of the different distances contributing toH(UuV) and
H(VuU). Ri

(N21)(U) and Ri
(k)(UuV) are squared mean dis

tances from (ui ,v i) in the horizontal direction. While
Ri

(N21)(U) averages overall points, Ri
(k)(UuV) averages

only overk points lying in a thinhorizontalband aroundv i
containing its nearest neighbors on thev axis. If v i lies in the
interval @«,12«#, these points are spread over the fullu
interval @0,1#. Hence, Ri

(k)(UuV) and Ri
(N21)(U) are ap-

proximately of the same order, independent from the f
that the corresponding distributions are not uniform. T
changes ifv i,« or v i.12« where the points in the ban
are bound to a smalleru region and Ri

(k)(UuV)
,Ri

(N21)(U). With this tendency to quotients greater than
in Eq. ~6!, the average over all points (ui ,v i) yields a posi-
tive H(UuV).

An analogous reasoning can be followed forRi
(N21)(V)

andRi
(k)(VuU). The squared mean distance from (ui ,v i) to

all other pointsRi
(N21)(V) in the vertical direction is in fact

of the same order asRi
(N21)(U). Both quantities only depend

on their corresponding univariate probability distributio
p(U), respectively,p(V) and the symmetric form of Eq
~12! obviously implies p(U)5p(V). Ri

(k)(VuU) averages
over k points lying in the thinvertical band aroundui .
Again,Ri

(k)(VuU) is of the same order asRi
(N21)(V) if ui lies

FIG. 5. Realizations of Eq.~10! ~left! and Eq.~12! ~right! for
«50.2.

FIG. 6. Same as Fig. 2, but without embedding.
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in the interval@«,12«# and deviates from it ifui is outside
this band. But, as can be seen from Fig. 5, the deviatio
much smaller. For small«, Ri

(k)(VuU) deviates from
Ri

(N21)(V) by termsO(«2), while the analogous deviation o
Ri

(k)(UuV) from Ri
(N21)(U) is O(«). Thus, H(VuU)

,H(UuV).
The above argumentation is only valid for small«. The

observed asymmetry ofH around«50.5 in Fig. 4 can be
best understood by Eq.~12!. There, replacing« by 12« is
the same as exchangingU andV. This is, of course, only true
if p(Y(1))5p(Y(3)), respectively,p(Xl 21)5p(Xl 11) which
holds in both systems considered here.

Our examples show thatH is indeed able to find depen
dencies and directional information from time series. But
interpretation of the two observed systems as ‘‘driver’’ a
‘‘response’’ would only be possible if the existence of a th
external driving system can be excluded. In the example
I.

e

is

n

of

simple mixing, the asymmetry ofH arises from different
information contents contributed by a third system. For
considered unidirectionally coupled systems, the asymm
of H correctly detects the direction of the coupling if th
coupling strength is small.

Further, we would like to notice that we considered sca
time series without embedding only for simplicity reason
To see the necessity of embedding, compare Fig. 2 with
6 where the scalar time series was used and the asymm
of H is broken forC.0.6. As for many other methods i
nonlinear time series analysis@5#, a range of embedding di
mensions should be applied and compared to get opti
results.

We would like to thank Peter Grassberger, Thomas Sch
iber, Jochen Arnhold, and Rodrigo Quian Quiroga for use
discussions.
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